Please use this identifier to cite or link to this item: http://hdl.handle.net/11434/2022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaughan, Stephen-
dc.contributor.otherWickramasinghe, Nilmini-
dc.contributor.otherJayaraman, Prem-
dc.contributor.otherZelcer, John-
dc.contributor.otherUlapane, Nalika-
dc.contributor.otherForkan, Abdur-
dc.contributor.otherKaul, Rohit-
dc.date.accessioned2021-10-27T04:30:41Z-
dc.date.available2021-10-27T04:30:41Z-
dc.date.issued2021-03-11-
dc.identifier.citationEEE Internet Computing, doi: 10.1109/MIC.2021.3065381.en_US
dc.identifier.issn1941-0131en_US
dc.identifier.issn1089-7801en_US
dc.identifier.urihttp://hdl.handle.net/11434/2022-
dc.description.abstractExploring the opportunity for applying digital twins in the healthcare context is an emerging research area that has the potential to support more personalised care. A recognised aspect in cancer care is the need for more personalised treatment planning to complement the recent advances in precision medicine. In this article, we present a classification of digital twins into Grey Box, Surrogate and Black Box models using systems and mathematical modelling theory. We then explore one possible approach, namely a Black Box classification for incorporating the use of digital twins in the context of personalised uterine cancer care. This paper presents one of the first attempts to use digital twins in this capacity and represents an amalgamation of three key domains: clinical, digital health and computer science respectively.en_US
dc.publisherIEEEen_US
dc.subjectDigital Twinen_US
dc.subjectMathematical Modelen_US
dc.subjectComputational Modelingen_US
dc.subjectMedical Servicesen_US
dc.subjectCanceren_US
dc.subjectNumerical Modelsen_US
dc.subjectInterneten_US
dc.subjectPersonalised Treatment Planningen_US
dc.subjectUterine Canceren_US
dc.subjectDigital Healthen_US
dc.subjectCancer Services Clinical Instituteen_US
dc.titleA Vision for Leveraging the Concept of Digital Twins to Support the Provision of Personalised Cancer Care.en_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1109/MIC.2021.3065381en_US
dc.identifier.journaltitleIEEE Internet Computingen_US
dc.description.affiliatesSchool of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.en_US
dc.description.affiliatesComputer Science and Software Engineering, Swinburne University of Technology, Hawthorn, Victoria, Australia.en_US
dc.description.affiliatesFaculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, Victoria, Australia.en_US
dc.description.affiliatesSwinburne University of Technology, Hawthorn, Victoria, Australia.en_US
dc.type.contenttypeTexten_US
Appears in Collections:Cancer Services
Health Informatics

Files in This Item:
There are no files associated with this item.


Items in Epworth are protected by copyright, with all rights reserved, unless otherwise indicated.